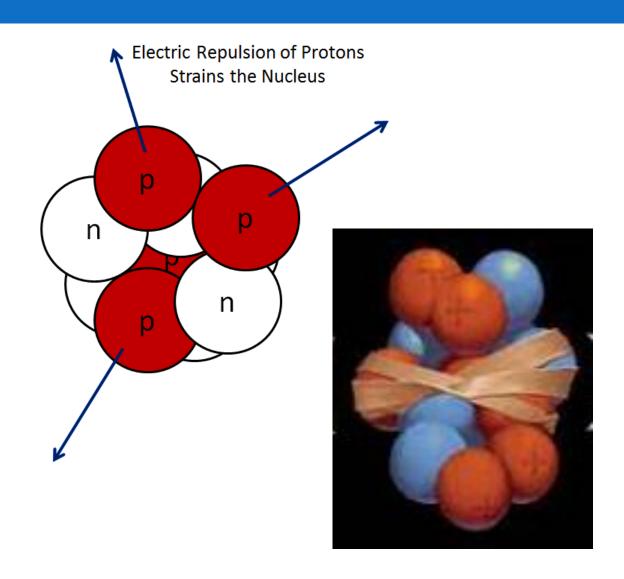
N6 — Intro to the Nucleus

Target: I can describe how the nucleus can change to become more stable if needed.

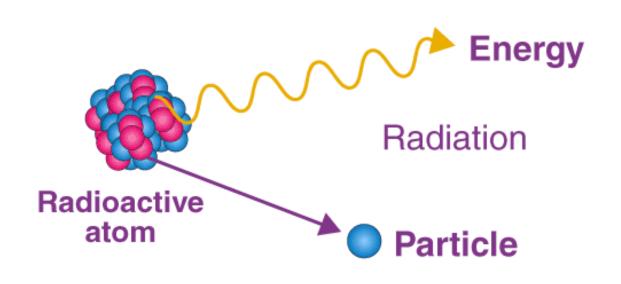

Not all atoms are stable!

- Sometimes the nucleus of an atom is unstable and cannot stay together.
- □ This is called being radioactive.

What keeps nuclei together normally?

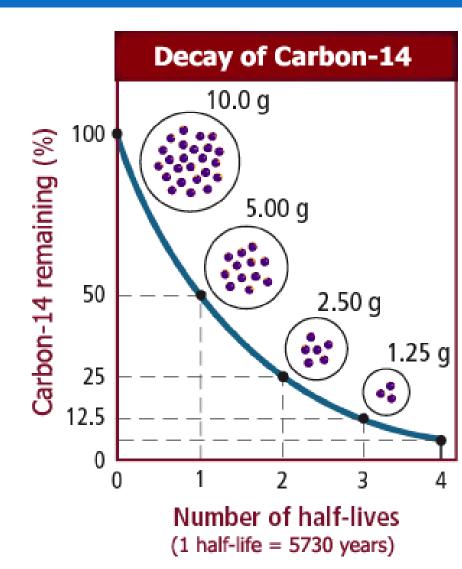
□ STRONG FORCE —

Holds the nucleus together, even though the protons want to repel each other.



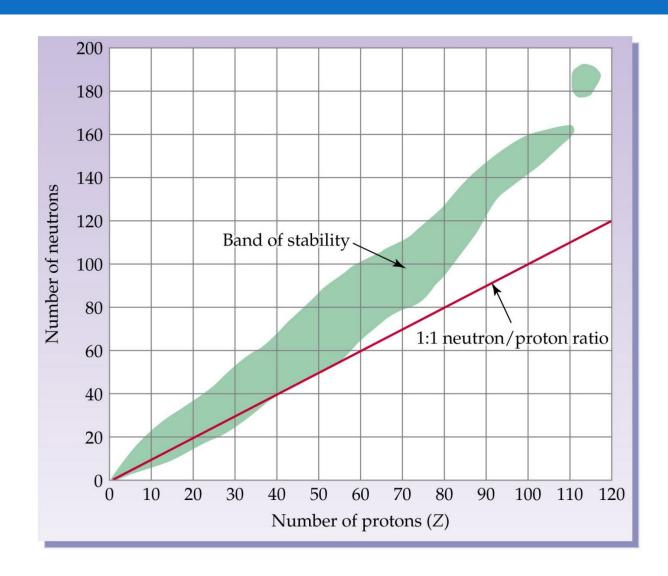
Why do nuclei come apart sometimes?

- □ Too many neutrons!
- □ Strong force won't be strong enough.
- Like a rubber band that is stretched too far...it will break!


What happens when it comes apart?

- □ Radiation!
- Also calledRadioactive Decay
- Particles and energy come flying out of the nucleus at high speeds/energies
- Radioactivity is these particles being released

How long does it take?


- Depends <u>only</u> on which isotope you have. Each one is unique!
- □ The time it takes for ½ the particles to "decay" is called half life

Band of Stability and Island of Stability

Neutron: Proton
 ratio larger than
 1:1 makes it more
 likely to be
 unstable, radioactive

(Clearly the 1:1 ratio is an over simplification – just go with it @If asked which is most stable just calculate the ratio and pick the one closest to 1:1. That is good enough for this level of chemistry!)

Nuclear Stability

Very Stable	Marginally Stable	Unstable/Radioactive

Nuclear Stability

Very Stable	Marginally Stable	Unstable/Radioactive
Atomic #s 1-20	Atomic #s 21-82	Atomic #s > 82
1:1 ratio	1:1.5 ratio	> 1:1.5 ratio
Protons : Neutrons	Protons : Neutrons	Protons : Neutrons
Example:	Example:	Example:
Carbon-12	Mercury-200	Uranium
6p:6n	80p:120n	Plutonium

Chemical Reactions	Nuclear Reactions
Occur when bonds	Occur when nuclei
are broken	emit particles and/or
	rays

Chemical Reactions	Nuclear Reactions
Occur when bonds are broken	Occur when nuclei emit particles and/or rays
Particles in the	Particles in the
nucleus remain	nucleus often
unchanged, although	converted into atoms
they may be	of another element
rearranged	

Chemical Reactions	Nuclear Reactions
Occur when bonds are broken	Occur when nuclei emit particles and/or rays
Particles in the nucleus remain unchanged, although they may be rearranged	Particles in the nucleus often converted into atoms of another element
Involve only valence	May involve protons,
electrons	neutrons, and
	electrons

Chemical Reactions	Nuclear Reactions
Occur when bonds are broken	Occur when nuclei emit particles and/or rays
Particles in the nucleus remain unchanged, although they may be rearranged	Particles in the nucleus often converted into atoms of another element
Involve only valence electrons	May involve protons, neutrons, and electrons
Associated with small	Associated with
energy changes	large energy
	changes

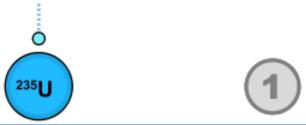
Chemical Reactions	Nuclear Reactions
Occur when bonds are broken	Occur when nuclei emit particles and/or rays
Particles in the nucleus remain unchanged, although they may be rearranged	Particles in the nucleus often converted into atoms of another element
Involve only valence electrons	May involve protons, neutrons, and electrons
Associated with small energy changes	Associated with large energy changes
Reaction rate influenced	Reaction rate is not
by temperature,	influenced by
particle size,	temperature, particle
concentration, etc.	size, concentration, etc.

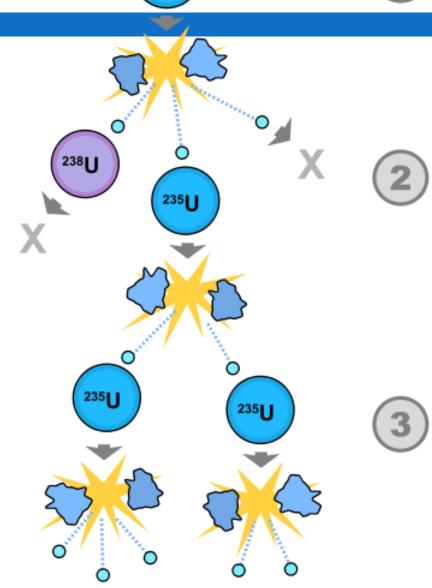
Nuclear Reactions

Isotopes of one element are changed into isotopes of another element

- Contents of the nucleus change
- Large amounts of energy released

Uses of Nuclear Reactions


Uncontrolled reactions are dangerous, but when used properly they can be useful!

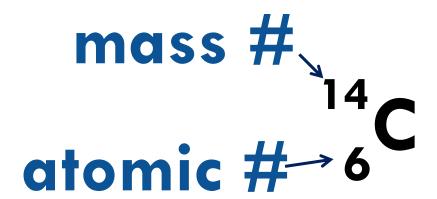

- Power plants
- Tracking chemical reactions and biological processes
- Radiation therapy for cancer
- Determining the age of dead plants/animals, or even rocks.

Nuclear Fission

- Splitting of a nucleus
- Chain Rxn one released particle sets off another atom, keeps happening
- Nuclear Reactor controlled situation, energy
 released slowly

Nuclear Fission

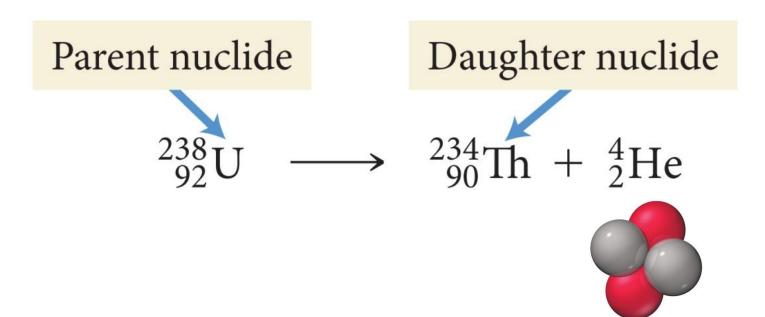
Nuclear Fission (don't need to write this)


- □ 1st controlled nuclear reaction in December 1942.
- □ 1st uncontrolled nuclear explosion occurred July 1945.
- Examples atomic bomb, current nuclear power plants

Nuclear Fusion

- Combining nuclei
- Doesn't normally happen (+ and + repel)
- □ **Pros** Inexpensive, no radioactive waste
- Cons Hard to control, large startup energy
- Examples stars, hydrogen bomb, future nuclear power plants

Nuclear Atomic Symbols


□ We will be writing our symbols like this:

Remember...to find #
of neutrons, subtract
mass # - atomic #

Type of Decay: Alpha Decay

 Nucleus emits a particle made of two protons and two neutrons – like a helium nucleus (not a helium atom, because it doesn't have any e⁻)

Alpha radiation

Composition	Symbol	Charge	Mass
helium nuclei	$\frac{4}{2}$ He, α	+2	4amu
Shielding	Approx. Energy	Penetrating power	
Paper,	5 A A A A B	Low	
clothing	5 MeV	0.05mm b	dy tissue

Type of Decay - Beta Decay

 Neutron is split into a proton an a "beta particle" which is like an electron

$$^{228}_{88}$$
Ra \longrightarrow $^{228}_{89}$ Ac + $^{0}_{-1}$ e

Beta radiation

Composition	Symbol	Charge	Mass
Same as an electron	$_{-1}^{0}e^{-}$, β	-1	1/1837 th (basically 0)
Shielding	Approx. Energy	Penetrating power	

Type of Decay - Positron

- Proton splits into a neutron and a positron.
- Like a beta particle, but has a charge of +1

$$^{30}_{15}P \longrightarrow ^{30}_{14}Si + ^{0}_{+1}e$$

Type of Decay - Gamma Emission

- High energy photons.
- No loss of particles from the nucleus
- Usually after the nucleus undergoes some other type of decay and the remaining particles rearrange

$$^{238}U^* \longrightarrow ^{234}Th + ^{4}He + ^{0}\gamma$$
 $^{\sim}$

Gamma radiation

Composition	Symbol	Charge	Mass
High energy electromagnetic radiation	$_{0}^{0}\gamma$	0	0
Shielding	Approx. Energy	Penetrating power	
Lead,	1 44 - \ /	High	
Concrete	1MeV	Penetrate	es easily

YouTube Link to Presentation

https://youtu.be/LrCO eciSLQ